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Collective behavior in globally coupled systems consisting of two kinds of competing cells
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We investigate a model of globally coupled systems consisting of two kinds of competing cells subject to
stochastic forcings. The problem of large numbers of coupled Langevin equations can be reduced to a simple
problem of two-dimensional differential equations. The global variables of the system show three types of
collective phases: disordered phase, ordered steady phase, and coherent oscillation phase, and the transition
conditions between these phases can be accurately predicted in the thermodynamic limit. A stochastic reso-
nancelike behavior in the coherent oscillation output is revealed, and numerical simulations confirm the ana-
Iytical results satisfactorily.S1063-651X98)07001-9

PACS numbes): 05.40:+j

[. INTRODUCTION fect. The numerical results of direct simulations of the high-
dimensional Langevin equations coincide with those of the
The problem of coupled nonlinear systems has attractethuch simplified two-dimensional system satisfactorily, and
considerable interest in the past decades, which study hdlen the validity of our theoretical analysis is well confirmed.
uncovered a variety of collective behavidis—4], such as
chorusing crickets, networks of neurons and synchronization 1l. MODEL AND PHASE TRANSITION DIAGRAM
transition in Josephson series arrays, etc. In the past decade,

a large number of studies on this aspect have been related t%ln the present wo_rk_,_we are mteres_ted In th_e collective
noise-driven problems, where the topics of noise-induced 'aS€s anq the pOSSIbIlI.ty of_the collective SR v_wthout exter-
phase transitions and stochastic resonaf®® demon- nal signal m_coupled noisy bistable systems. S|m|Iar to Ref.
strated around these phase transitions have become most g\ , We con_sud_er a model of glo_bally coupled two_-senes cells
tive [5-15 (for the latest review, se€l5]). It has been w 'C.h are |nd|cated_by>¢§ ’Yi).’ 1=1,2,..N. The inner dy-
shown that the SR effect of global variables say macro- namics of each cell is described by

scopic variablescan be induced by the mutual actions of
noise, coupling, and external periodical forcing, among
which the external periodic force is the critical ingredient for y=y—y3+A(1), 2.1)

the SR behavior of spatiotemporal syste6s8,12,14,1%

As yet, no clear advancement has been seen in the collegrhere a>0. While all cells are globally coupled to each
tive SR effect and other collective effects for coupled sysother through a single quantity Z=X-Y, X
tems without an external signal. Knowledge in this respect is= (1/N)si=Nx; , Y=(1/N)E}j“yj, x is regarded as being
extremely important. On one hand, coupled autonomous Sygyctive, andy is suppressive. The competition betweeand
tems exist in nature very popularly, therefore a deep undery yie|ds many interesting features of this model. The idea of

standing of the characteristic features of these systems Mugie competition between activators and suppressors appears
be of practical interest. On the other hand, the understanding, many fields. Then, our model can be formulated as

of the dynamics of the basic autonomous systems can cer-

x=ax—x3+T'(t),

tainly help us to thoroughly analyze the response behavior of Xj=ax; _Xi3+ w1 Z(t)+ (1),
the systems to external forces.
In Sec. I, we describe our model of noise-driven globally YjZYj—YJ?’+MzZ(t)+Ai(t),

coupled systems with two kinds of competing cells, and re-
duce the high-dimensional Langevin equations to two (Ty(1))=0, (Ty(O)T;/(t"))=2D6; 8(t—t'),
coupled ordinary differential equations in a large system size

limit (the so-called thermodynamic limitThree kinds of (A;(1)=0, (A;(DA;/(t")=2D,8;,8(t—t),
phase transitions are revealed. In Sec. lll, we investigate the
synchronized oscillation of the macroscopic output, and find (Ti(H)A;(t'))=0, (2.2

stochastic resonance in this synchronization process. For fi-
nite cell number, we modify the two coupled ordinary differ- where we take&=0.9, u,= 8w, andD,;=D,=D through-
ential equations to two coupled Langevin equations to takeut the paper. In all of the following, we investigate the
into account the fluctuation caused by finite system size efmacroscopic state in phase spa¢gY), which shows the
collective behavior of the microscopic variables
(X1,Y1;---:Xn,Yn)- The positive couplings in Eq$2.2) can
* Author to whom correspondence should be addressed. also be regarded as the diffusive couplings, and the negative
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ones as the resistancelike couplings. It is interesting to inves- . woZ Y4
tigate the effect caused by their interaction. Our analysis is (Y (t))=—Top COSH =5~ (Y (1)) g, sin T)
based on the conditions

In the thermodynamic limitN—oce, X(t)=(X(t)) and Y(t)

p12, D<1 andN>1. 23 =(Y(t)); then we have

The inequalityu, ,<1 guarantees bistability of eact and JauZ
yj in the system(2.2). It will be shown that the analytical X (t)=—ro cos?‘( aps
results can be well confirmed by numerically running the D
original spatiotemporal stochastic systerf%s2) at small ,
while finite D, w4 ., and large while finiteN. Cn M2 . M2

Under the conditiori2.3), the continuous bistable systems Y (1)=-Tq COS"( T) Y(t)+ro sm){ T) . (2.9
Egs. (2.2) can be reduced to two-state ones fprandy;,
respectively, and then the coupled stochastic bistable syg-he stationary solution of Eq$2.8) can be worked out as
tems can be simplified to the following coupled master equa-

Buril
anl‘( D ) (2.9

tions[6]: 7—Jata n}‘( \/—Ml
Py=—RMP,+R;, P;+P,=1, i=12,.N,
' I I ' It is clear thatZ=0 is always a solution of Eq2.9), i.e.,
Prf=—RPZ+R’, PI+PI=1, i=1,2,..N, X=Y=0 is always a stationary solution of Eq2.8). Sta-
Y] ey it Y (2.4) bility analysis ofX=Y=0 shows that this solution may lose
' its stability in two cases,

m1(rosB—ro@)+(rog+ro)D=0 (2.103

r(\/—mz

) X(t)++arg, sin

WhereP+ and Py (P+ and P ) are the probabilities fox;

(yj) to take the state- Ja and Ja (+1 and—1), respec-
tively; R (Ry) is the transition rate from state\/g to and
—Ja (- \/Eto ++/a) for x, andR} (R;) is that from+1 to

—1(—1to+1) fory, respectively, which reads mi(a—p)=D. (2.10h
. a a2 \/_Mlz In the former caséi.e., by changing the left side ¢2.103
R;:f_ &N~ D | R=R;+R, from <0 to >0], the solutionX=Y=0 changes from a
an

stable focus to an unstable focus, i.e., it undergoes a Hopf
\/EMZ bifurcation; in the latter cagehangingu,(a— 8) from <D
=rg cos)‘( 5| to >D] the origin changes from a stable node to a saddle,
i.e., it undergoes a saddle-node bifurcation. Thus, we pre-
sume the system may have three phases: the stableXstate
R = 1 F{_i+ﬂzz) R—R'+R =Y=0 (corresponding to disordered phas¢he bistable
4D D )’ state(corresponding to spontaneous ordering pheaed the
coherent oscillation stat@orresponding to the spontaneous
M2l spatiotemporal synchronization moving phasehich are
~lo2 COSP(T)' actually found and plotted in Fig. 1, where the dashed and
solid lines are drawn by Eq$2.109 and (2.10b, respec-
V2 1 tively. As wiu,>0, we can observe all three phases, while
Fo2= exy{ - E) (2.9 asu,u,<0, the coherent oscillation phase can never occur,
and only the first two phases can be observed. Two interest-
By averaging Eqs(2.4), ing points in these figures are worth noting. First,
codimension-2 bifurcation can be identified at the intersec-
1 tions of the saddle node and Hopf bifurcation critical curves,
X()=y > [\/EP:QL(— Ja) Pyl in the vicinity of which some interesting and complicated
=t dynamics may be expected. Second, the two phases of the
N bistable state and coherent oscillation are separated by global
(Y(1))= E 2 [Pf+(—1)P] (2.6) heteroclinic bifurcatioridisked lines in Fig. (8]; this bifur-
Nj=- i i cation condition cannot be given explicitly. The disks are
obtained by numerical simulations on E¢8.8). Further in-
we can further reduce thBl coupled master equations to vestigation shows that no bistable state existsdora and
two-dimensional differential equations w1>0, and this agrees with the results in Ré&f, where we
took B=a, x>0 and could find the disordered and coher-
\/—,U«l ent oscillation phases onlyo bistable ordered phase ex)sts
Figure 2a) plots out the schematic phase diagram by fix-
ing w1=0.08, where the regions 1,2,3 represent the stable
\/_Mlz) X=Y=0 solution, the bistable state, and coherent oscilla-
tion, respectively. Figure(B) shows the detailed behavior of

av2 a?
for=—~ &R " 2p)

(X (0)=—r0s COS’{ )(X(t)> (2.7

arg sin
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FIG. 1. The boundaries separating various phases of the state of 08 , ‘ ,
Egs.(2.8). The dashed and solid lines indicate pitchfork and Hopf : 0 0.02 0.04 0.06

bifurcations from stableX=Y=0 to bistable and synchronized os-
cillation states, respectivel)X=Y =0 is stable on the right side of V4

these two critical lines. The disked lines represent the critical pa- (C)
rameters separating two regions of bistability and coherent oscilla-
tion. (& wm1>0, ©,=0.04,0.08,0.14;(b) ©,<0, wu,=-—0.04,
—0.08,-0.14; (c) B>0, 8=0.36,0.90,1.25{d) B<0, B=—0.36, 0r
—0.9-1.25.

the system as the noise intensity increases for the coupling
n1=0.08 andB=0.36 [along the horizontal dotted line in
Fig. 2@)]. The results are obtained by simulating E(&8) -2 - ‘ ' ﬁ
with the four-step Runge-Kutta procedure, in which at least - -05 0 05
20 000 relaxation steps are eliminated. All sites are located
in the four wells ¢ Ja,* 1). The competition between cou- FIG. 2. (a) Schematic phase diagram of global variaBlén 8
pling and noise determines the balance of the population-D plane.x;=0.08 and all curves have the same meanings as Fig.
occupations in these four wells, and then determines thé. Regions 1, 2, and 3 represent disordered $taté/ =0, bistable
value of the global variablZ=X—Y. The system shows the state for steady nonzerd and Y, and synchronized oscillation,
bistable phase for smalD. By increasingD to cross the respectively. The intersection of dashed, solid, and disked curves is
heteroclinic bifurcation line, we can find the limit cycle so- @ codimension-2 bifurcation pointb) Asymptotic bifurcation dia-
lution, after which the spatially synchronized and temporallydam ofZ versus noise intensit}p. =0.36.[The horizontal line
periodic oscillation phase comes into being. By increafing ©f (@] (¢) Asymptotic bifurcation diagram of versus coupling
further, the amplitude of the limit cycle decreases, and finallyP2rametei. D=0.04[the vertical line of(a)].
shrinks to the stable fixed poid=Y=0 (stable focusvia ) o ) o
the inverse Hopf bifurcation. lective oscillation can be observed only in a certain interme-
Similar to Fig. Zb), Fig. 2c) shows the detailed behavior diate range oD. Therefore, there must exist a valuefin
along the vertical dotted line in Fig.(®, on which we fix which the opt|mum_match|ng of coupllng and noise exerts
u1=0.08 andD =0.04 and havgs increased fron=—1 to th(=T strongest spatlote_mporal syn_chr_onlzatlo_n. Too weak
1. In the case of3<—1 all cells are drawn into the state NOiS€ is not able to stimulate o;scnlatpn, while too strong
(Ja,— 1) or the state £ \a,+1); that produces the macro- N°IS€ may destroy c_oherent motion. ]t is easy to accept that
scopic variableZ=X— Y~ (1+ ya). The amplitude o the optlmym cqllectlve synchror)lzanon iny occurs when
can be reduced by increasimgjdue to the balance of the the n0|§e !nten3|ty arld thg coupllng density are compgrable.
population occupations in the four wells=(/a, x1). By  Eerduantistuey measurng he niensy of he ouputcoherent motn, we
further increasing3, we find both heteroclinic bifurcation to
the limit cycle solution and inverse Hopf-bifurcation to a 1 (T
uniqgue stable steady solutiot=Y=0; this is again consis- E.= lim = f
tent with the phase figure of Fig(&. 7= 1 Jo

1(dX(t))2 1(dY(t))2

Ill. STOCHASTIC RESONANCE IN THE SYNCHRONIZED

COHERENT OUTPUT, FINITE SIZE EFFECT Since E,=0 corresponds to static output, while largg

shows strong synchronized oscillation, it is reasonable to use
From Fig. Zb), it is clear that no coherent oscillation can E, to measure the noise-induced coherence. Figure 3 takes
be found for either very small or very lard®; intense col- parameter values the same as Fidp)2and we ploE, vsD,
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o 11
6x10™ (EE)) =1z 2 (Ay(HAY;(t))
5x10° | 1
= ——T 7z X —R/|t=t]),
ax10® | pol
) | N cos&{ D
Yoaxi0®
s (n(OE))=(&Mn(t"))=0,
2x10 " |
. (n())=(&(1))=0.
1x10 "
I By inserting Egs.(3.2) into Egs. (2.7), we arrive at two
0 : ‘ : : coupled stochastic equations
0.032 0.036 0.04 0.044
D
. auq,Z auZ
X(t)y=—rg cos}‘( \/_Ml )X(t) + \/arc,l sin}-( \/—Ml
FIG. 3. The dimensionless kinetic energy vs noise interi3ity
E, is computed from Eqg2.8) and(3.1), along with the horizontal d(t)
line in Fig. Xa). +Ryp(t) + —— T
where a resonancelike response peak is obviously observed;
this is reminiscent of a SR since the resonance is purely _ Mo [l
noise-induced, and the peaked curve is shown against noise ¥ (V)= ~To2 COSI\ =5~ |Y(t) +T¢ SINA =5~ |+ Ry £(1)
intensity.
All the results from Fig. 1 to Fig. 3 are obtained from Egs. N dé(t) 3.4
(2.8), which are derived for the limiN—c. Practically, we dt ' (3.4

are dealing with large while finit&. Therefore,X(t) and

Y(t) should be subject to certain fluctuations. To take intowhere n(t) and ¢(t) are the effective colored noises having
account the finite size effect and improve our derivation, wezero mean and exponentially decay correlations given in Egs.
start from Egs. (2.7), and replace the identities((t) (3.3. By identifying[16—1§

=(X(1)) and Y(t)=(Y(1)) by

da(t

Z—(t):—Rxn(t)-i-RxA(t),
X(t)=(X(t))+ n(t),

dé(t

%:_Ryg(t)ﬂ—RyH(t), 3.9

YO =(Y(1))+ (). (3.2

we can reduce Eq$3.4) to

For large while finiteN, the statistical property of,(t) and

&(t) can be computed, based on the assumption that thex _ \/aﬂlz X \/—,ulZ
variations of the macroscopic variablgt) and Y(t) are (t)=—ror COS D (D) + vare sin
much slower than the variations of the microscopic variables
Xi—\a(Py — Py) andy]:PJr P, and then we can con- TRA(D),
sider X(t) and Y(t) to be constant when we compute the
variances ok; andy; (the so-called adiabatic approximation ) Moz YA
treatmenk A direct computation with Eqg2.4) gives Y ()= —Top COSI =5~ Y (1) +T o SINA =5~ [+ RyIL(1),
1 (A(D)A(t'))=2D}8(t—t'), D)= 2
(O ()=1z 2 (Axi(HAX(1) ' Lo Vau Z\ ¥’
= NR,| cos D

2 exq_RX|t_t,|)1

_ a
= \/5 -
N COSV{ 1

D

(II(HTI(t"))=2D58(t—t"), Djy=

(3.3
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FIG. 4. The spectra o(t) for various D's. N=100, x4
=0.08,3=0.36. The best coherent output appears for intermediate
D. (@) The results of Eqg2.2), (b) the results of Eq9.3.6). Their 03 . . L
results are very similar. 0.025 0.035 0.045 00ss D

FIG. 5. The SNR R) defined in Eq(3.7) versus noise intensity
D. N=100, u;=0.08, and 8=0.36. (a) The results of Egs.
(2.2). (b) The results of Eq9.3.6). The agreement of both results
is fairly good.

(AMIIE))=(IL(A(t'))=0, (A(t)>=<H(t)>=(0é

Now the 2N (eo>N>1) coupled system§2.2) or the 2N
coupled master equatiori2.4) are reduced to two coupled

Langevin equations with white noises. This reduction is very ) . , . .
general in the two-state approximation, irregardless of th&ndB=0.36. From Fig. 5, two interesting points are noticed.

particular form of the system. The statistical quantities of the"Ir'St, we find a nice stochastic resonance response without
noise are known explicitly. An interesting as well as desir-external periodic forcing. There exists an optimal noise in-
able feature of Eqg3.6) is that we do not need to increase tensity for the given couphlngs_ at WhI.Ch the o_utp_ut cont.alns
the dimension of the problem in order to treat the coloredhe strongest coherent oscillation. This behavior is consistent
noises. Only white noises are retained in the equations afte¥ith the behavior in Fig. 3. Second, the agreement between

the cancellations; that greatly reduces the difficulty of the(@ and (b) is fairly good both qualitatively and quantita-
problem. tively, although the system sizZd is not really large; this

With noise, the quantity3.1) is no longer adequate for agreement confirms the validity of the above derivations
measuring the coherence and the degree of the synchroniZ%0Mm EQ.(2.2) to Eq.(3.6). Of course, the finit®, u, andN
tion of the output, because fluctuation caused by noise can il cause some visible deviations between E@s2) and
accumulated in the integration. In order to better detect th&ds- (3.6) [i.e., between Figs.(4) and 4b), and %a) and

intensity of the coherent output oscillation, we use the fol-2(0)]. Note, the computation of Eq$3.6) is incomparably
lowing quantity: less time consuming than that of the origin&l-2limensional

equationg2.2), thus this reduction is practically very useful.

R=h(Aw/wp)71, (3.7
whereh is the highest height of the peak in the spectrum of V. CONCLUSION
X(t), w, is the frequency at the peak center, ad is the In summary, this paper has investigated collective phases
right half-width of the peak at the height=e~*?h. In Ref.  in globally coupled noise-driven systems with two competi-
[19], the authors used this quantity to measure the degree tibn series. In the thermodynamic limit and in the two-state
the output coherence of low-dimensional Langevin equationapproximation, we reduce the system of many coupled
and regarded it as a signal-to-noise rai8NR) of a noisy  Langevin equations to enormously simpler two coupled or-
autonomous system. In Fig.(a} we set u,=0.08, u, dinary differential equations, and find three different collec-
=0.0288, andN=100, and plot some spectra &f(t) for  tive phases: the disordered phaXe-Y=0; the ordered
differentD by directly running Eqs(2.2); the best coherent bistable phase, which can appear from the disordered phase
output appears for the intermedidde In Fig. 4(b) we do the via second-order pitch-fork bifurcation; and the coherent os-
same agqa) by running the reduced Eg$3.6), and obtain cillation phase, which occurs from the disordered phase via
very similar results. In Figs. (8 and 5b), we computeR Hopf bifurcation. There is a global heteroclinic bifurcation
versusD by numerically running Eqs(2.2) and (3.6), re-  critical line separating the phases of bistability and oscilla-
spectively. The parameters are takenNas 100, ©;=0.08, tion. An interesting codimension-2 bifurcation point is iden-
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tified at the intersection of all these three critical lines. It istwo-dimensional Langevin equations. All the above charac-
emphasized that all these single- or multicodimensionateristic features including fluctuation induced by finite sys-
phase transitions are purely noise induced. tem size can be well predicted by the reduced equations, and
Among all these three phases, we are most interested ¥umerical simulations of the large systems confirm the va-
noise-induced coherent oscillation. Two quantities, noisetidity of the analytical reduction.
induced kinetic energy and quality factor, are suggested to
measure the noise-induced coherence and the degree of syn-
chr_omzatlon of_the subsystems. With poth quantities, inter- ACKNOWLEDGMENTS
esting stochastic resonance for collective motion is found.
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