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Collective behavior in globally coupled systems consisting of two kinds of competing cells
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~Received 11 August 1997!

We investigate a model of globally coupled systems consisting of two kinds of competing cells subject to
stochastic forcings. The problem of large numbers of coupled Langevin equations can be reduced to a simple
problem of two-dimensional differential equations. The global variables of the system show three types of
collective phases: disordered phase, ordered steady phase, and coherent oscillation phase, and the transition
conditions between these phases can be accurately predicted in the thermodynamic limit. A stochastic reso-
nancelike behavior in the coherent oscillation output is revealed, and numerical simulations confirm the ana-
lytical results satisfactorily.@S1063-651X~98!07001-9#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

The problem of coupled nonlinear systems has attrac
considerable interest in the past decades, which study
uncovered a variety of collective behaviors@1–4#, such as
chorusing crickets, networks of neurons and synchroniza
transition in Josephson series arrays, etc. In the past dec
a large number of studies on this aspect have been relate
noise-driven problems, where the topics of noise-indu
phase transitions and stochastic resonance~SR! demon-
strated around these phase transitions have become mo
tive @5–15# ~for the latest review, see@15#!. It has been
shown that the SR effect of global variables~or say macro-
scopic variables! can be induced by the mutual actions
noise, coupling, and external periodical forcing, amo
which the external periodic force is the critical ingredient f
the SR behavior of spatiotemporal systems@6–8,12,14,15#.

As yet, no clear advancement has been seen in the co
tive SR effect and other collective effects for coupled s
tems without an external signal. Knowledge in this respec
extremely important. On one hand, coupled autonomous
tems exist in nature very popularly, therefore a deep und
standing of the characteristic features of these systems
be of practical interest. On the other hand, the understan
of the dynamics of the basic autonomous systems can
tainly help us to thoroughly analyze the response behavio
the systems to external forces.

In Sec. II, we describe our model of noise-driven globa
coupled systems with two kinds of competing cells, and
duce the high-dimensional Langevin equations to t
coupled ordinary differential equations in a large system s
limit ~the so-called thermodynamic limit!. Three kinds of
phase transitions are revealed. In Sec. III, we investigate
synchronized oscillation of the macroscopic output, and fi
stochastic resonance in this synchronization process. Fo
nite cell number, we modify the two coupled ordinary diffe
ential equations to two coupled Langevin equations to t
into account the fluctuation caused by finite system size
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fect. The numerical results of direct simulations of the hig
dimensional Langevin equations coincide with those of
much simplified two-dimensional system satisfactorily, a
then the validity of our theoretical analysis is well confirme

II. MODEL AND PHASE TRANSITION DIAGRAM

In the present work, we are interested in the collect
phases and the possibility of the collective SR without ext
nal signal in coupled noisy bistable systems. Similar to R
@8#, we consider a model of globally coupled two-series ce
which are indicated by (xi ,yi), i 51,2,...,N. The inner dy-
namics of each cell is described by

ẋ5ax2x31G~ t !,

ẏ5y2y31D~ t !, ~2.1!

where a.0. While all cells are globally coupled to eac
other through a single quantity Z5X2Y, X
5(1/N)( i 51

i 5Nxi , Y5(1/N)( j 51
j 5Nyj , x is regarded as being

active, andy is suppressive. The competition betweenx and
y yields many interesting features of this model. The idea
the competition between activators and suppressors app
in many fields. Then, our model can be formulated as

ẋi5axi2xi
31m1Z~ t !1G i~ t !,

ẏ j5yj2yj
31m2Z~ t !1D i~ t !,

^G i~ t !&50, ^G i~ t !G i 8~ t8!&52D1d i i 8d~ t2t8!,

^D j~ t !&50, ^D j~ t !D j 8~ t8!&52D2d j j 8d~ t2t8!,

^G i~ t !D j~ t8!&50, ~2.2!

where we takea50.9,m25bm1 , andD15D25D through-
out the paper. In all of the following, we investigate th
macroscopic state in phase space (X,Y), which shows the
collective behavior of the microscopic variable
(x1 ,y1 ;...;xN ,yN). The positive couplings in Eqs.~2.2! can
also be regarded as the diffusive couplings, and the nega
2543 © 1998 The American Physical Society
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ones as the resistancelike couplings. It is interesting to inv
tigate the effect caused by their interaction. Our analysi
based on the conditions

m1,2, D!1 and N@1. ~2.3!

The inequalitym1,2!1 guarantees bistability of eachxi and
yj in the system~2.2!. It will be shown that the analytica
results can be well confirmed by numerically running t
original spatiotemporal stochastic systems~2.2! at small
while finite D, m1,2, and large while finiteN.

Under the condition~2.3!, the continuous bistable system
Eqs. ~2.2! can be reduced to two-state ones forxi and yj ,
respectively, and then the coupled stochastic bistable
tems can be simplified to the following coupled master eq
tions @6#:

Ṗxi

652RxPxi

61Rx
7 , Pxi

11Pxi

251, i 51,2,...,N,

Ṗyj

652RyPyj

61Ry
7 , Pyj

11Pyj

251, j 51,2,...,N,

~2.4!

wherePxi

1 and Pxi

2 ~Pyj

1 and Pyj

2! are the probabilities forxi

(yj ) to take the state1Aa and2Aa ~11 and21!, respec-
tively; Rx

1 (Rx
2) is the transition rate from state1Aa to

2Aa ~2Aa to 1Aa! for x, andRy
1 (Ry

2) is that from11 to
21 ~21 to 11! for y, respectively, which reads

Rx
65

a

&p
expS 2

a2

4D
7

Aam1Z

D D , Rx5Rx
11Rx

2

5r 01 coshSAam1Z

D D ,

Ry
65

1

&p
expS 2

1

4D
7

m2Z

D D , Ry5Ry
11Ry

2

5r 02 coshS m2Z

D D ,

r 015
a&

p
expS 2

a2

4D D , r 025
&

p
expS 2

1

4D D . ~2.5!

By averaging Eqs.~2.4!,

^X~ t !&5
1

N (
i 51

N

@AaPxi

11~2Aa!Pxi

2#,

^Y~ t !&5
1

N (
j 51

N

@Pyj

11~21!Pyj

2#, ~2.6!

we can further reduce theN coupled master equations t
two-dimensional differential equations

^X (̇t)&52r 01 coshSAam1Z

D D ^X~ t !&

1Aar01 sinhSAam1Z

D D ,

~2.7!
s-
is

s-
-

^Y ~̇ t !&52r 02 coshS m2Z

D D ^Y~ t !&1r 02 sinhS m2Z

D D .

In the thermodynamic limitN→`, X(t)5^X(t)& and Y(t)
5^Y(t)&; then we have

X ~̇ t !52r 01 coshSAam1Z

D DX~ t !1Aar01 sinhSAam1Z

D D ,

Y ~̇ t !52r 02 coshS m2Z

D DY~ t !1r 02 sinhS m2Z

D D . ~2.8!

The stationary solution of Eqs.~2.8! can be worked out as

Z5Aa tanhSAam1Z

D D 2tanhS bm1Z

D D . ~2.9!

It is clear thatZ50 is always a solution of Eq.~2.9!, i.e.,
X5Y50 is always a stationary solution of Eqs.~2.8!. Sta-
bility analysis ofX5Y50 shows that this solution may los
its stability in two cases,

m1~r 02b2r 01a!1~r 011r 02!D>0 ~2.10a!

and

m1~a2b!>D. ~2.10b!

In the former case@i.e., by changing the left side of~2.10a!
from ,0 to .0#, the solutionX5Y50 changes from a
stable focus to an unstable focus, i.e., it undergoes a H
bifurcation; in the latter case@changingm1(a2b) from ,D
to .D# the origin changes from a stable node to a sadd
i.e., it undergoes a saddle-node bifurcation. Thus, we p
sume the system may have three phases: the stable staX
5Y50 ~corresponding to disordered phase!, the bistable
state~corresponding to spontaneous ordering phase!, and the
coherent oscillation state~corresponding to the spontaneo
spatiotemporal synchronization moving phase!, which are
actually found and plotted in Fig. 1, where the dashed a
solid lines are drawn by Eqs.~2.10a! and ~2.10b!, respec-
tively. As m1m2.0, we can observe all three phases, wh
asm1m2,0, the coherent oscillation phase can never occ
and only the first two phases can be observed. Two inter
ing points in these figures are worth noting. Fir
codimension-2 bifurcation can be identified at the inters
tions of the saddle node and Hopf bifurcation critical curv
in the vicinity of which some interesting and complicate
dynamics may be expected. Second, the two phases o
bistable state and coherent oscillation are separated by g
heteroclinic bifurcation@disked lines in Fig. 1~a!#; this bifur-
cation condition cannot be given explicitly. The disks a
obtained by numerical simulations on Eqs.~2.8!. Further in-
vestigation shows that no bistable state exists forb.a and
m1.0, and this agrees with the results in Ref.@8#, where we
took b5a, m1.0 and could find the disordered and cohe
ent oscillation phases only~no bistable ordered phase exists!.

Figure 2~a! plots out the schematic phase diagram by fi
ing m150.08, where the regions 1,2,3 represent the sta
X5Y50 solution, the bistable state, and coherent osci
tion, respectively. Figure 2~b! shows the detailed behavior o
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57 2545COLLECTIVE BEHAVIOR IN GLOBALLY COUPLED . . .
the system as the noise intensity increases for the coup
m150.08 andb50.36 @along the horizontal dotted line in
Fig. 2~a!#. The results are obtained by simulating Eqs.~2.8!
with the four-step Runge-Kutta procedure, in which at le
20 000 relaxation steps are eliminated. All sites are loca
in the four wells (6Aa,61). The competition between cou
pling and noise determines the balance of the popula
occupations in these four wells, and then determines
value of the global variableZ5X2Y. The system shows th
bistable phase for smallD. By increasingD to cross the
heteroclinic bifurcation line, we can find the limit cycle s
lution, after which the spatially synchronized and tempora
periodic oscillation phase comes into being. By increasingD
further, the amplitude of the limit cycle decreases, and fina
shrinks to the stable fixed pointX5Y50 ~stable focus! via
the inverse Hopf bifurcation.

Similar to Fig. 2~b!, Fig. 2~c! shows the detailed behavio
along the vertical dotted line in Fig. 2~a!, on which we fix
m150.08 andD50.04 and haveb increased fromb521 to
1. In the case ofb,21 all cells are drawn into the stat
(Aa,21) or the state (2Aa,11); that produces the macro
scopic variableZ5X2Y'6(11Aa). The amplitude ofZ
can be reduced by increasingb due to the balance of th
population occupations in the four wells (6Aa,61). By
further increasingb, we find both heteroclinic bifurcation to
the limit cycle solution and inverse Hopf-bifurcation to
unique stable steady solutionX5Y50; this is again consis
tent with the phase figure of Fig. 2~a!.

III. STOCHASTIC RESONANCE IN THE SYNCHRONIZED
COHERENT OUTPUT, FINITE SIZE EFFECT

From Fig. 2~b!, it is clear that no coherent oscillation ca
be found for either very small or very largeD; intense col-

FIG. 1. The boundaries separating various phases of the sta
Eqs.~2.8!. The dashed and solid lines indicate pitchfork and Ho
bifurcations from stableX5Y50 to bistable and synchronized o
cillation states, respectively.X5Y50 is stable on the right side o
these two critical lines. The disked lines represent the critical
rameters separating two regions of bistability and coherent osc
tion. ~a! m1.0, m150.04,0.08,0.14; ~b! m1,0, m1520.04,
20.08,20.14; ~c! b.0, b50.36,0.90,1.25;~d! b,0, b520.36,
20.9,21.25.
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lective oscillation can be observed only in a certain interm
diate range ofD. Therefore, there must exist a value ofD in
which the optimum matching of coupling and noise exe
the strongest spatiotemporal synchronization. Too w
noise is not able to stimulate oscillation, while too stro
noise may destroy coherent motion. It is easy to accept
the optimum collective synchronization only occurs wh
the noise intensity and the coupling density are compara
For quantitatively measuring the intensity of the output coherent motion,
quote the classical dimensionless kinetic energy

Ek5 lim
T→`

1

T E
0

TF1

2 S dX~ t !

dt D 2

1
1

2 S dY~ t !

dt D 2Gdt. ~3.1!

Since Ek50 corresponds to static output, while largeEk
shows strong synchronized oscillation, it is reasonable to
Ek to measure the noise-induced coherence. Figure 3 ta
parameter values the same as Fig. 2~b!, and we plotEk vs D,

of
f

-
a-

FIG. 2. ~a! Schematic phase diagram of global variableZ in b
2D plane.m150.08 and all curves have the same meanings as
1. Regions 1, 2, and 3 represent disordered stateX5Y50, bistable
state for steady nonzeroX and Y, and synchronized oscillation
respectively. The intersection of dashed, solid, and disked curve
a codimension-2 bifurcation point.~b! Asymptotic bifurcation dia-
gram ofZ versus noise intensityD. b50.36. @The horizontal line
of ~a!#. ~c! Asymptotic bifurcation diagram ofZ versus coupling
parameterb. D50.04 @the vertical line of~a!#.
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where a resonancelike response peak is obviously obse
this is reminiscent of a SR since the resonance is pu
noise-induced, and the peaked curve is shown against n
intensity.

All the results from Fig. 1 to Fig. 3 are obtained from Eq
~2.8!, which are derived for the limitN→`. Practically, we
are dealing with large while finiteN. Therefore,X(t) and
Y(t) should be subject to certain fluctuations. To take in
account the finite size effect and improve our derivation,
start from Eqs. ~2.7!, and replace the identitiesX(t)
5^X(t)& andY(t)5^Y(t)& by

X~ t !5^X~ t !&1h~ t !,

Y~ t !5^Y~ t !&1j~ t !. ~3.2!

For large while finiteN, the statistical property ofh(t) and
j(t) can be computed, based on the assumption that
variations of the macroscopic variablesX(t) and Y(t) are
much slower than the variations of the microscopic variab
xi 5Aa(Pxi

12Pxi

2) and yj5Pyj

12Pyj

2 , and then we can con

sider X(t) and Y(t) to be constant when we compute th
variances ofxi andyj ~the so-called adiabatic approximatio
treatment!. A direct computation with Eqs.~2.4! gives

^h~ t !h~ t8!&5
1

N2 (
i 51

i 5N

^Dxi~ t !Dxi~ t8!&

5
a

N coshFAam1Z

D G2 exp~2Rxut2t8u!,

~3.3!

FIG. 3. The dimensionless kinetic energy vs noise intensityD.
Ek is computed from Eqs.~2.8! and~3.1!, along with the horizontal
line in Fig. 2~a!.
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^j~ t !j~ t8!&5
1

N2 (
j 51

j 5N

^Dyj~ t !Dyj~ t8!&

5
1

N coshFm2Z

D G2 exp~2Ryut2t8u!,

^h~ t !j~ t8!&5^j~ t !h~ t8!&50,

^h~ t !&5^j~ t !&50.

By inserting Eqs.~3.2! into Eqs. ~2.7!, we arrive at two
coupled stochastic equations

X ~̇ t !52r 01 coshSAam1Z

D DX~ t !1Aar01 sinhSAam1Z

D D
1Rxh~ t !1

dh~ t !

dt
,

Y ~̇ t !52r 02 coshS m2Z

D DY~ t !1r 02 sinhS m2Z

D D1Ryj~ t !

1
dj~ t !

dt
, ~3.4!

whereh(t) andj(t) are the effective colored noises havin
zero mean and exponentially decay correlations given in E
~3.3!. By identifying @16–18#

dh~ t !

dt
52Rxh~ t !1RxL~ t !,

dj~ t !

dt
52Ryj~ t !1RyP~ t !, ~3.5!

we can reduce Eqs.~3.4! to

X ~̇ t !52r 01 coshSAam1Z

D DX~ t !1Aar01 sinhSAam1Z

D D
1RxL~ t !,

Y ~̇ t !52r 02 coshS m2Z

D DY~ t !1r 02 sinhS m2Z

D D1RyP~ t !,

^L~ t !L~ t8!&52D18d~ t2t8!, D185
a

NRxFcoshSAam1Z

D D G2 ,

^P~ t !P~ t8!&52D28d~ t2t8!, D285
1

NRyFcoshS m2Z

D D G2 ,
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^L~ t !P~ t8!&5^P~ t !L~ t8!&50, ^L~ t !&5^P~ t !&50.
~3.6!

Now the 2N (`.N@1) coupled systems~2.2! or the 2N
coupled master equations~2.4! are reduced to two couple
Langevin equations with white noises. This reduction is v
general in the two-state approximation, irregardless of
particular form of the system. The statistical quantities of
noise are known explicitly. An interesting as well as des
able feature of Eqs.~3.6! is that we do not need to increas
the dimension of the problem in order to treat the colo
noises. Only white noises are retained in the equations a
the cancellations; that greatly reduces the difficulty of
problem.

With noise, the quantity~3.1! is no longer adequate fo
measuring the coherence and the degree of the synchro
tion of the output, because fluctuation caused by noise ca
accumulated in the integration. In order to better detect
intensity of the coherent output oscillation, we use the f
lowing quantity:

R5h~Dv/vp!21, ~3.7!

whereh is the highest height of the peak in the spectrum
X(t), vp is the frequency at the peak center, andDv is the
right half-width of the peak at the heighth15e21/2h. In Ref.
@19#, the authors used this quantity to measure the degre
the output coherence of low-dimensional Langevin equati
and regarded it as a signal-to-noise ratio~SNR! of a noisy
autonomous system. In Fig. 4~a! we set m150.08, m2
50.0288, andN5100, and plot some spectra ofX(t) for
different D by directly running Eqs.~2.2!; the best coheren
output appears for the intermediateD. In Fig. 4~b! we do the
same as~a! by running the reduced Eqs.~3.6!, and obtain
very similar results. In Figs. 5~a! and 5~b!, we computeR
versusD by numerically running Eqs.~2.2! and ~3.6!, re-
spectively. The parameters are taken asN5100, m150.08,

FIG. 4. The spectra ofX(t) for various D ’s. N5100, m1

50.08,b50.36. The best coherent output appears for intermed
D. ~a! The results of Eqs.~2.2!, ~b! the results of Eqs.~3.6!. Their
results are very similar.
y
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andb50.36. From Fig. 5, two interesting points are notice
First, we find a nice stochastic resonance response with
external periodic forcing. There exists an optimal noise
tensity for the given couplings at which the output conta
the strongest coherent oscillation. This behavior is consis
with the behavior in Fig. 3. Second, the agreement betw
~a! and ~b! is fairly good both qualitatively and quantita
tively, although the system sizeN is not really large; this
agreement confirms the validity of the above derivatio
from Eq.~2.2! to Eq.~3.6!. Of course, the finiteD, m, andN
still cause some visible deviations between Eqs.~2.2! and
Eqs. ~3.6! @i.e., between Figs. 4~a! and 4~b!, and 5~a! and
5~b!#. Note, the computation of Eqs.~3.6! is incomparably
less time consuming than that of the original 2N-dimensional
equations~2.2!, thus this reduction is practically very usefu

IV. CONCLUSION

In summary, this paper has investigated collective pha
in globally coupled noise-driven systems with two compe
tion series. In the thermodynamic limit and in the two-sta
approximation, we reduce the system of many coup
Langevin equations to enormously simpler two coupled
dinary differential equations, and find three different colle
tive phases: the disordered phaseX5Y50; the ordered
bistable phase, which can appear from the disordered p
via second-order pitch-fork bifurcation; and the coherent
cillation phase, which occurs from the disordered phase
Hopf bifurcation. There is a global heteroclinic bifurcatio
critical line separating the phases of bistability and osci
tion. An interesting codimension-2 bifurcation point is ide

te

FIG. 5. The SNR (R) defined in Eq.~3.7! versus noise intensity
D. N5100, m150.08, and b50.36. ~a! The results of Eqs.
~2.2!. ~b! The results of Eqs.~3.6!. The agreement of both result
is fairly good.
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tified at the intersection of all these three critical lines. It
emphasized that all these single- or multicodimensio
phase transitions are purely noise induced.

Among all these three phases, we are most intereste
noise-induced coherent oscillation. Two quantities, noi
induced kinetic energy and quality factor, are suggested
measure the noise-induced coherence and the degree of
chronization of the subsystems. With both quantities, in
esting stochastic resonance for collective motion is found

In large system size and small noise approximations,
reduce the original high-dimensional Langevin equations
et

et

v.

o

l

in
-

to
yn-
r-

e
o

two-dimensional Langevin equations. All the above char
teristic features including fluctuation induced by finite sy
tem size can be well predicted by the reduced equations,
numerical simulations of the large systems confirm the
lidity of the analytical reduction.
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